A Study of Modeling Techniques of Building Energy Consumption

Author:

Zerroug A.,Dzelzitis E.

Abstract

Residential energy consumption accounts for more than 40% of the total energy consumed in the world. The residential sector is the biggest consumer of energy in every country, and therefore focusing on the reduction of energy consumption in this sector is very important. The energy consumption characteristics of the residential sector are very complicated and the variables affecting the consumption are wide and interconnected, so more detailed models are needed to assess the impact of adopting efficient and renewable energy technologies suitable for residential applications. The aim of this paper is to review some of the techniques used to model residential energy consumption. They are gathered in two categories: top-down and bottom-up. The top-down approach considers the residential sector as an energy sink and does not take into account the individual end-uses. The bottom-up approach uses the estimated energy consumption of a representative set of individual houses and extrapolates it to regional and national levels. Based on the strengths, shortcomings, and purposes, an analytical review of each technique, is provided along with a review of models reported in the literature.

Publisher

Engineering, Technology & Applied Science Research

Reference26 articles.

1. Energy Information Administration, International Energy Outlook 2016 With Projections to 2040, Technical Report Series, Vol. 484, EIA, 2016

2. O. G. Santin, Actual energy consumption in dwellings: The effect of energy performance regulations and occupant behavior, IOS Press, 2010

3. L. Lutzenhiser, “A question of control: Alternative patterns of room air-conditioner use”, Energy and Buildings, Vol. 18, No. 3-4, pp. 193–200, 1992

4. H. Jeeninga, M. Uyterlinde, J. Uitzinger, Energieverbruik van energiezuinige woningen, ECN-C-01-072, ECN, 2001 (in Dutch)

5. L. G. Swan, V. I. Ugursal, “Modeling of end-use energy consumption in the residential sector: A review of modeling techniques”, Renewable and Sustainable Energy Reviews, Vol. 13, No. 8, pp. 1819-1835, 2009

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning Baseline Energy Model (MLBEM) to Evaluate Prediction Performances in Building Energy Consumption;Engineering, Technology & Applied Science Research;2024-08-02

2. A New Approach in Daylighting Design for Buildings;Engineering, Technology & Applied Science Research;2023-08-09

3. Alternative Construction using BIM in Old Educational Buildings;Engineering, Technology & Applied Science Research;2023-04-02

4. Strategy of Energy Conservation and Emission Reduction in Residential Building Sector: A Case Study of Jiangsu Province, China;Journal of Environmental and Public Health;2023-01-31

5. Overview of Green Roof Technology as a Prospective Energy Preservation Technique in Arid Regions;Engineering, Technology & Applied Science Research;2022-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3