Abstract
The significant energy consumption for railway electric transportation operation poses a great challenge in outlining saving energy solutions. Speed profile optimization based on optimal control theory is one of the most common methods to improve energy efficiency without the railway infrastructure investment costs. The paper proposes an optimization method based on Pontryagin's Maximum Principle (PMP), not only to find optimal switching points in three operation phases: accelerating, coasting, braking, and from these switching points being able to determine the optimal speed profile, but also to ensure fixed-trip time. In order to determine trip time abiding by the scheduled timetables by applying nonlinear programming puts the Lagrange multiplier λ in the objective function regarded as a time constraint condition. The correctness and energy effectiveness of this method have been verified by the simulation results with data collected from the electrified trains of the Cat Linh-Ha Dong metro line in Vietnam. The saving energy levels are compared in three scenarios: electrified train operation tracking the original speed profile (energy consumption of the route: 144.64kWh), train operation tracking the optimal speed profile without fixed-trip time (energy consumption of the route: 129.18kWh), and train operation tracking the optimal speed profile and fixed trip time (energy consumption of the route: 132.99kWh) in an effort to give some useful choices for operating metro lines.
Publisher
Engineering, Technology & Applied Science Research
Reference23 articles.
1. G. R. Kazemiyan, A. Rasooli, and S. Rafipoor, "The advantages of rail transport compared to road within the city, based on a sustainable development approach, case study Tehran Metro Line 4," Research and Urban Planning, vol. 6, no. 23, pp. 77-94, Jan. 2016.
2. V. R. Vuchic, Urban Transit Systems and Technology, 1st ed. Hoboken, NJ, USA: Wiley, 2007.
3. S. Su, T. Tang, and Y. Wang, "Evaluation of Strategies to Reducing Traction Energy Consumption of Metro Systems Using an Optimal Train Control Simulation Model," Energies, vol. 9, no. 2, p. 105, Feb. 2016.
4. J. Yang, L. Jia, S. Lu, Y. Fu, and J. Ge, "Energy-Efficient Speed Profile Approximation: An Optimal Switching Region-Based Approach with Adaptive Resolution," Energies, vol. 9, no. 10, pp. 1-27, 2016.
5. P. Howlett, "The Optimal Control of a Train," Annals of Operations Research, vol. 98, no. 1, pp. 65-87, Dec. 2000.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献