Design and Implementation of a Statistical Testing Framework for a Lightweight Stream Cipher

Author:

Alamer A.ORCID,Soh B.

Abstract

The Shrinking Generator (SG) is a popular synchronous, lightweight stream cipher that uses minimal computing power. However, its strengths and weaknesses have not been studied in detail. This paper proposes a statistical testing framework to assess attacks on the SG. The framework consists of a d-monomial test that is adapted to SG by applying the algebraic normal form (ANF) representation of Boolean functions, a test that uses the maximal degree monomial test to determine whether the ANF follows the proper mixing of bit values, and a proposed unique window size (UWS) scheme to test the randomness properties of the keystream. The proposed framework shows significant weaknesses in the SG output in terms of dependence between the controlling linear-feedback shift register (LFSR) and non-linearity of the resulting keystream. The maximal degree monomial test provides a better understanding of the optimal points of SG, demonstrating when it is at its best and worst according to the first couple of results. This paper uses UWS to illustrate the effect of the LFSR choice on possibly distinguishing attacks on the SG. The results confirm that the proposed UWS scheme is a viable measure of the cryptographic strength of a stream cipher. Due to the importance of predictability and effective tools, we used neural network models to simulate the input data for the pseudo-random binary sequences. Through the calculation of UWS, we obtained solid results for the predictions.

Publisher

Engineering, Technology & Applied Science Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. AES High-Level SystemC Modeling using Aspect Oriented Programming Approach;Engineering, Technology & Applied Science Research;2021-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3