Author:
Akpeke N. E.,Muriithi C. M.,Mwaniki C.
Abstract
The increasing penetration of wind energy to the conventional power system due to the rapid growth of energy demand has led to the consideration of different wind turbine generator technologies. In fault conditions, the frequency of the power system decreases and eventually leads to speed differences between the grid and the interconnected wind generator. This can result to power system problems such as transient instability (TS). This paper focuses on enhancing the TS of a permanent magnet synchronous generator (PMSG)-based power system during 3ph fault conditions using FACTS devices. The power system considered is connected to a large wind farm which is based on PMSG. Critical clearing time (CCT) is used as an index to evaluate the transient state of the system. Under the study of an IEEE-14 bus system using PSAT as a simulation tool, the integrated CCT with PMSG-based wind turbine is improved with three independent FACTS devices. One of the synchronous generators in the test system has been replaced at random with the PMSG-based wind turbine which is meant to generate an equivalent power. Time domain simulations (TDSs) were carried out considering four study cases. Simulation results show that the (CCT) of the system with the FACTS devices is longer than the CCT without them, which is an indication of TS improvement.
Publisher
Engineering, Technology & Applied Science Research
Reference26 articles.
1. M. K. Nigam, S. Singh, C. Francis, “Effects on power system stability due to integration of distributed generation”, Journal of Science and Engineering Education, Vol. 2, pp. 56–60, 2017
2. N. W. Miller, M. Shao, S. Pajic, R. D. Aquila, Western wind and solar integration study phase 3: Frequency response and transient stability, National Renewable Energy Laboratory, 2014
3. A. D. Patel, “A review on FACTS devices for the improvement of transient stability”, Global Journal of Engineering Science and Resources, Vol. 2, No. 12, pp. 85–89, 2015.
4. M. L. Tuballa, M. L. S. Abundo, “Operational impact of RES penetration on a remote diesel-powered system in west Papua, Indonesia”, Engineering, Technology & Applied Science Research, Vol. 8, No. 3, pp. 2963–2968, 2018
5. A. Safaei, S. H. Hosseinian, H. A. Abyaneh, “Enhancing the HVRT and LVRT capabilities of DFIG-based wind turbine in an islanded microgrid”, Engineering, Technology & Applied Science Research, Vol. 7, No. 6, pp. 2118–2123, 2017
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献