Enhanced-PCA based Dimensionality Reduction and Feature Selection for Real-Time Network Threat Detection

Author:

More P.,Mishra P.

Abstract

With the rise of the data amount being collected and exchanged over networks, the threat of cyber-attacks has also increased significantly. Timely and accurate detection of any intrusion activity in networks has become a crucial task in order to safeguard data and other valuable assets. While manual moderation and programmed logic have been used for this purpose, the use of machine learning algorithms for superior pattern mapping is desired. The system logs in a network tend to include many parameters, and not all of them provide indications of an impending network threat. The selection of the right features is thus important for achieving better results. There is a need for accurate mapping of high dimension features to low dimension intermediate representations while retaining crucial information. In this paper, an approach for feature reduction and selection when working on the task of network threat detection is proposed. This approach modifies the traditional Principal Component Analysis (PCA) algorithm by working on its shortcomings and by minimizing the false detection rates. Specifically, work has been done upon the calculation of symmetric uncertainty and subsequent sorting of features. The performance of the proposed approach is evaluated on four standard-sized datasets that are collected using the Microsoft SYSMON real-time log collection tool. The proposed method is found to be better than the standard PCA and FAST methods for data reduction. The proposed approach makes a strong case as a dimensionality reduction and feature selection technique for minimizing false detection rates when operating on real-time data.

Publisher

Engineering, Technology & Applied Science Research

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3