Abstract
Ensuring security for lightweight cryptosystems in mobile cloud computing is challenging. Encryption speed and battery consumption must be maintained while securing mobile devices, the server, and the communication channel. This study proposes a lightweight security protocol called FEATHER which implements MICKEY 2.0 to generate keystream in the cloud server and to perform mobile device decryption and encryption. FEATHER can be used to implement secure parameters and lightweight mechanisms for communication among mobile devices and between them and a cloud server. FEATHER is faster than the existing CLOAK protocol and consumes less battery power. FEATHER also allows more mobile devices to communicate at the same time during very short time periods, maintain security for more applications with minimum computation ability. FEATHER meets mobile cloud computing requirements of speed, identity, and confidentiality assurances, compatibility with mobile devices, and effective communication between cloud servers and mobile devices using an unsafe communication channel.
Publisher
Engineering, Technology & Applied Science Research
Reference32 articles.
1. [1] P. Bahl, R. Y. Han, L. E. Li, and M. Satyanarayanan, "Advancing the state of mobile cloud computing," in Proceedings of the third ACM workshop on Mobile cloud computing and services, Low Wood Bay, Lake District, UK, Jun. 2012, pp. 21-28.
2. [2] K. Kumar and Y. Lu, "Cloud Computing for Mobile Users: Can Offloading Computation Save Energy?," Computer, vol. 43, no. 4, pp. 51-56, Apr. 2010.
3. [3] H. Dinh Thai, C. Lee, D. Niyato, and P. Wang, "A survey of mobile cloud computing: Architecture, applications, and approaches," Wireless Communications and Mobile Computing, vol. 13, no. 18, pp. 1587-1611, Dec. 2013.
4. [4] "Number of mobile phone users worldwide 2015-2020," Statista. https://www.statista.com/statistics/274774/forecast-of-mobile-phone-users-worldwide/ (accessed Jul. 23, 2020).
5. [5] G. Singh and S. Kinger, "A Study of Encryption Algorithms (RSA, DES, 3DES and AES) for Information Security," International Journal of Computer Applications, vol. 67, no. 19, pp. 33-38, Apr. 2013.