Author:
Zengah S.,Aid A.,Benguediab M.
Abstract
Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM), Henry model and Unified Theory (UT) and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.
Publisher
Engineering, Technology & Applied Science Research
Reference43 articles.
1. ASTM E 1049-85, “Standard practices for cycle counting in fatigue analysis”, in: Annual Book of ASTM Standards, Vol. 03, No. 01, pp. 614–620, Philadelphia, 1997
2. N. E. Dowling, “Fatigue failure prediction for complicated stress-strain histories Journal of Materials, Vol. 7, No. 1, pp. 71–87, 1972
3. T. Lagoda, E. Macha, A. Nieslony, “Fatigue life calculation by means of the cycle counting and spectral methods under multiaxial random loading”, Fatigue & Fracture of Engineering Materials & Structures, Vol. 28, No. 4, pp. 409–420, 2005
4. P. H. Wirsching, M .C. Light, “Fatigue under wide band random stresses using rainflow method”, J. Struct. Division., Vol. 106, No. ST7, 1593–1607, 1980
5. E. Macha, T. Lagoda, A. Nieslony, D. Kardas, “Fatigue life under variable-amplitude loading according to the cycle-counting and spectral methods”, Materials Science, Vol. 42, No. 3, pp. 416-425, 2006
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献