Enhanced Intrusion Detection in IoT with a Novel PRBF Kernel and Cloud Integration

Author:

Mopuru Bhargavi,Pachipala Yellamma

Abstract

The proliferation of Internet of Things (IoT) devices in various sectors has increased the need for robust security solutions capable of addressing complex network vulnerabilities and sophisticated cyber threats. This study introduces a novel architecture that integrates cloud computing with advanced machine learning techniques to provide efficient and scalable security in IoT systems. A unique Polynomial Radial Basis Function (PRBF) kernel is proposed to enhance the classification accuracy of Support Vector Machine (SVM) beyond traditional Gaussian and polynomial kernels. This study compares the proposed PRBF-SVM with Logistic Regression, SVM, and XGBoost models, optimized through rigorous hyperparameter tuning, to demonstrate significant improvements in detection rates. Furthermore, the integration of cloud services facilitates the offloading of computationally intensive tasks, ensuring scalability and real-time response capabilities. The results highlight the superior performance of the proposed model in accuracy, efficiency, and computation time, making a compelling case for its application in safeguarding IoT environments against evolving threats.

Publisher

Engineering, Technology & Applied Science Research

Reference19 articles.

1. G. S. Mahmood, D. J. Huang, and B. A. Jaleel, "Achieving an Effective, Confidentiality and Integrity of Data in Cloud Computing," International Journal of Network Security, vol. 21, no. 2, pp. 326–332, Mar. 2019.

2. O. Saeed and R. Shaikh, "A user-based trust model for cloud computing environment," International Journal of Advanced Computer Science and Applications, vol. 9, no. 3, pp. 337–346, 2018.

3. F. Anindra, A. N. Hidayanto, and H. Prabowo, "Critical Components of Security Framework for Cloud Computing Community: A Systematic Literature Review," International Journal of Pure and Applied Mathematics, vol. 118, no. 18, pp. 3345–3358, 2018.

4. G. Thamilarasu and S. Chawla, "Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things," Sensors, vol. 19, no. 9, Jan. 2019, Art. no. 1977.

5. S. Rajendran and R. Mary Lourde, "Security Threats of Embedded Systems in IoT Environment," in Inventive Communication and Computational Technologies, 2020, pp. 745–754.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3