Author:
Tang Gia Tue,Bui Nguyen Duc Huy,Long Duong Thanh
Abstract
Congestion management is one of the most important issues in power system operation, especially in competitive electricity markets. The main aim of Congestion Management (CM) is to eliminate congestion in transmission lines. The most common technique to deal with the CM problem is re-dispatching the generator. However, finding an optimal solution for the CM problem constitutes a challenge for many researchers. Recently, a new biologically inspired metaheuristic algorithm, called Circulatory System Based Optimization (CSBO), was developed and proven to be effective in handling optimization issues. The CSBO algorithm was applied to solve the CM problem for the IEEE-30 bus system in two different cases. The former was compared with the Crayfish Optimization Algorithm (COA), Artificial Rabbits Optimization (ARO), Improved Grey Wolf Optimizer (I-GWO), and other existing methods. The simulation results revealed that the cost obtained from the proposed CSBO algorithm was lower than 14.5%, 11.31%, 9.97%, and 4% compared to PSO, FPA, FFA, and ALO. In addition, the stability of the proposed algorithm was higher than that of the other methods after 30 trials.
Publisher
Engineering, Technology & Applied Science Research
Reference24 articles.
1. J. R. Chintam and M. Daniel, "Real-Power Rescheduling of Generators for Congestion Management Using a Novel Satin Bowerbird Optimization Algorithm," Energies, vol. 11, no. 1, Jan. 2018, Art. no. 183.
2. H. Y. Yamina and S. M. Shahidehpour, "Congestion management coordination in the deregulated power market," Electric Power Systems Research, vol. 65, no. 2, pp. 119–127, May 2003.
3. G. Yesuratnam and D. Thukaram, "Congestion management in open access based on relative electrical distances using voltage stability criteria," Electric Power Systems Research, vol. 77, no. 12, pp. 1608–1618, Oct. 2007.
4. C. Venkaiah and D. M. Vinod Kumar, "Fuzzy adaptive bacterial foraging congestion management using sensitivity based optimal active power re-scheduling of generators," Applied Soft Computing, vol. 11, no. 8, pp. 4921–4930, Dec. 2011.
5. K. Pandiarajan and C. K. Babulal, "Transmission Line Management Using Hybrid Differential Evolution with Particle Swarm Optimization.," Journal of Electrical Systems, vol. 10, no. 1, 2014.