Evaluating Nine Machine Learning Algorithms for GaN HEMT Small Signal Behavioral Modeling through K-fold Cross-Validation

Author:

Ahmad Neda,Nath VandanaORCID

Abstract

This paper presents an investigation into the modeling of Gallium Nitride (GaN) High Electron Mobility Transistors (HEMTs) using multiple Machine Learning (ML) algorithms. Despite the documented use of various ML techniques, a thorough comparison and performance analysis under different operating conditions were lacking. This study fills this gap by conducting a rigorous evaluation of nine ML models using TCAD-generated data of Pseudomorphic AlGaN/InGaN/GaN HEMT. The research focuses on Small Signal Behavioral Modeling and examines regression techniques such as Multiple Linear Regression (MLR), Multivariate Linear Regression (MVLR), Ridge Regression (L2), Lasso Regression (L1), Elastic Net Regression (ENR), Decision Trees (DT), Random Forest (RF), Gradient Boosting Regression(GBR), and Support Vector Regression (SVR). These methods use biases, frequency, and device geometry as independent variables, with S-parameters being the dependent variables. K-fold cross-validation was employed to ensure model reliability and accuracy across diverse operating conditions. Results reveal that the RF, coupled with 10-fold cross-validation, exhibits superior performance giving 99.7% accurate results, with a Mean Squared Error (MSE) of 4.6375×10-5, and a coefficient of determination (R2) of 0.9977. Conversely, SVR, L1, and ENR fall short of expectations. This study underscores the significance of methodological advancements in ML-based GaN HEMT modeling and provides valuable insights for future research in this domain.

Publisher

Engineering, Technology & Applied Science Research

Reference42 articles.

1. R. Chu and K. Shinohara, III-Nitride Electronic Devices. Cambridge, MA, USA: Academic Press, 2019.

2. J. Xu and D. Chen, "A Performance Comparison of GaN E-HEMTs Versus SiC MOSFETs in Power Switching Applications," Bodo´s Power Systems, pp. 36–39, Jun. 2017.

3. M. Haziq, S. Falina, A. A. Manaf, H. Kawarada, and M. Syamsul, "Challenges and Opportunities for High-Power and High-Frequency AlGaN/GaN High-Electron-Mobility Transistor (HEMT) Applications: A Review," Micromachines, vol. 13, no. 12, Dec. 2022, Art. no. 2133.

4. M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, "High electron mobility transistor based on a GaN‐AlxGa1−xN heterojunction," Applied Physics Letters, vol. 63, no. 9, pp. 1214–1215, Aug. 1993.

5. T. Fernandez et al., "Modelling reliability in GaN HEMT devices," in 8th Conference on Simulation, Modelling and Optimization, Stevens Point, WI, USA, Sep. 2008, pp. 315–318.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3