Enhancing Neural Network Resilence against Adversarial Attacks based on FGSM Technique

Author:

Ben Ammar Mohamed,Ghodhbani Refka,Saidani Taoufik

Abstract

The robustness and reliability of neural network architectures are put to the test by adversarial attacks, resulting in inaccurate findings and affecting the efficiency of applications operating on Internet of Things (IoT) devices. This study investigates the severe repercussions that might emerge from attacks on neural network topologies and their implications on embedded systems. In particular, this study investigates the degree to which a neural network trained in the MNIST dataset is susceptible to adversarial attack strategies such as FGSM. Experiments were conducted to evaluate the effectiveness of various attack strategies in compromising the accuracy and dependability of the network. This study also examines ways to improve the resilience of a neural network structure through the use of adversarial training methods, with particular emphasis on the APE-GAN approach. The identification of the vulnerabilities in neural networks and the development of efficient protection mechanisms can improve the security of embedded applications, especially those on IoT chips with limited resources.

Publisher

Engineering, Technology & Applied Science Research

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting and Mitigating Data Poisoning Attacks in Machine Learning: A Weighted Average Approach;Engineering, Technology & Applied Science Research;2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3