A Comparison of the Surface Pressure Distribution of Circular Cables and Helical Fillet Cables under Wind Attack: A Wind Tunnel Test Study

Author:

Nguyen Duy ThaoORCID,Vo Duy HungORCID,Do Viet HaiORCID

Abstract

This study examines the aerodynamic performance and surface pressure distribution features of circular and helical fillet stay cables when subjected to wind using wind tunnel testing. The research seeks to clarify the aerodynamic performance disparities between conventional circular stay cables and helical fillet cables, providing valuable insights into their appropriateness for cable-supported structures exposed to wind-induced vibrations. The study initially investigates the aerodynamic efficiency of circular and helical fillet cables. Afterward, the wind tunnel captures the distribution of surface pressure on both cable surfaces. The findings suggest that circular stay cables may undergo cable dry galloping, whereas helical fillet cables demonstrate stability when subjected to wind forces. Furthermore, there are noticeable differences in the surface pressure distribution patterns between circular stay cables and helical fillet cables. Circular stay cables provide a symmetric distribution of pressure, with uniform pressure magnitudes along their surfaces, forming a symmetric pattern. On the other hand, helical fillet cables exhibit modified airflow patterns, leading to asymmetric pressure on the cable surface. Furthermore, the dry galloping observed in circular cables is attributed to the presence of low-frequency components. In contrast, helical fillet cables exhibit a more regulated incidence of low-frequency vortices, making them less prone to wind-induced vibrations.

Publisher

Engineering, Technology & Applied Science Research

Reference29 articles.

1. J. P. Den Hartog, Mechanical vibrations, 4th ed. New York, NY, USA: McGraw-Hill, 1956.

2. R. H. Scanlan, Wind effects on structures: an introduction to wind engineering. John Wiley & Sons, 1993.

3. G. Larose and W. Smitt, "Rain/wind induced vibrations of parallel stay cables." in Proceedings of the IABSE Conference, Cable-Stayed Bridges-Past, Present and Future, Malmo, Sweden, 1999.

4. D. Zuo and N. P. Jones, "Interpretation of field observations of wind- and rain-wind-induced stay cable vibrations," Journal of Wind Engineering and Industrial Aerodynamics, vol. 98, no. 2, pp. 73–87, Feb. 2010.

5. A. Bosdogianni and D. Olivari, "Wind- and rain-induced oscillations of cables of stayed bridges," Journal of Wind Engineering and Industrial Aerodynamics, vol. 64, no. 2, pp. 171–185, Nov. 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3