G-GANS for Adaptive Learning in Dynamic Network Slices

Author:

Alanazi Meshari Huwaytim

Abstract

This paper introduces a novel approach to improve security in dynamic network slices for 5G networks using Graph-based Generative Adversarial Networks (G-GAN). Given the rapidly evolving and adaptable nature of 5G network slices, traditional security mechanisms often fall short in providing real-time, efficient, and scalable defense mechanisms. To address this gap, this study proposes the use of G-GAN, which combines the strengths of Generative Adversarial Networks (GANs) and Graph Neural Networks (GNNs) for adaptive learning and anomaly detection in dynamic network environments. The proposed approach utilizes GAN to generate realistic network traffic patterns, both normal and adversarial, whereas GNNs analyze these patterns within the context of the network's graph-based topology. This combination facilitates the early detection of anomalies and potential security threats, adapting to the ever-changing configurations of network slices. The current study presents a comprehensive methodology for implementing G-GAN, including system architecture, data processing, and model training. The experimental analysis demonstrates the efficacy of G-GAN in accurately identifying security threats and adapting to new scenarios, revealing that G-GAN outperformed established models with an accuracy of 97.12%, precision of 96.20%, recall of 97.24%, and F1-Score of 96.72%. This study not only contributes to the field of network security in the context of 5G, but also opens avenues for future exploration in the application of hybrid AI models for real-time security across various domains.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3