Cascaded and Separate Channel Estimation based on CNN for RIS-MIMO Systems

Author:

Hussein Wala'a,Noordin Nor K.,Audah Kamil,Rasid Mod Fadlee B. A.,Ismail Alyani Binti,Flah Aymen

Abstract

With the dramatic increase in mobile users and wireless devices accessing the network, the performance of 5G wireless communication systems is severely challenged. Reconfigurable Intelligent Surface (RIS) has received much attention as one of the promising technologies for 6G due to its ease of deployment, low power consumption, and low price. This study aims to improve accuracy, reliability, and the capacity to estimate channel characteristics between transmitter and receiver. However, this is practically challenging for the following reasons. Due to the lack of active components for baseband signal processing, low-cost passive RIS elements can only reflect incident signals but without the capability to transmit/receive pilot signals for channel estimation as active transceivers in conventional wireless communication systems. This study presents different channel estimation methods for RIS-MIMO systems that use deep learning techniques.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3