Evaluation Strength of Materials of the Compressor Wheel and Engine Power in the Turbocharger

Author:

Danh Tran Huu,Ky Le Hong,Anh Pham Hoang,Tam Dang Thanh,Hiep Nguyen Hoang

Abstract

This paper presents the research results on the strength of materials and power of the Toyota 3C engine when changing the structure and number of blades of the compressor wheel in the turbocharger. 3D models of different compressor wheels were created using reverse engineering and then simulated in the ANSYS environment with turbine shaft rotation speeds of 10,000, 15,000, and 20,000 rpm, respectively, to examine the strength of the compression wheel materials. To evaluate engine power, compressor wheels were machined on a 5-axis CNC milling machine. The MP 100S specialized test bed was used to perform experiments and compare engine power when using the original and alternative compressor wheels of the CT9 turbocharger. The compressor wheels were made of aluminum alloy, with a structure and number of blades selected to ensure durability when working. The CT9 turbocharger has a four-pair blade compressor wheel that consistently delivers higher engine power than in other cases.

Publisher

Engineering, Technology & Applied Science Research

Reference19 articles.

1. K. Hazizi, "Aerodynamic Optimisation of Turbocharger Compressor Diffuser Geometry for Real-World Drive Cycles," Ph.D. dissertation, Anglia Ruskin University, Cambridge, UK, 2021.

2. S. K. Bohidar, P. K. Sen, and R. Bharadwaj, "Study of Turbo Charging," International Journal of Advanced Technology in Engineering and Science, vol. 3, no. 1, pp. 498–505, Apr. 2015.

3. S. Thorat, "Centrifugal Compressor - Diagam, Parts, Working, Efficiency, Advantages." Hydraulic and Pneumatic System, Learn Mechanical Engineering. https://learnmech.com/centrifugal-compressor-diagram-parts-working-advantages.

4. B. Mallikarjuna and Dr. U. Chandrashekar, "Innovative Modeling and Rapid Prototyping of Turbocharger Impeller," Science and Engineering of Composite Materials, vol. 2, no. 9, pp. 1426–1432, Sep. 2013.

5. A. A. Thet, A. K. Latt, S. Y. Htwe, and M. Zaw, "Analysis of Turbine Blade for Automobile Turbocharger by Changing Material and Number of Blades," Iconic Research And Engineering Journals (IRE Journals), vol. 2, no. 6, pp. 122–127, 2018.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3