Author:
Krishna R. V. V.,Srinivas Kumar S.
Abstract
This paper proposes a hybrid of differential evolution and genetic algorithms to solve the color image segmentation problem. Clustering based color image segmentation algorithms segment an image by clustering the features of color and texture, thereby obtaining accurate prototype cluster centers. In the proposed algorithm, the color features are obtained using the homogeneity model. A new texture feature named Power Law Descriptor (PLD) which is a modification of Weber Local Descriptor (WLD) is proposed and further used as a texture feature for clustering. Genetic algorithms are competent in handling binary variables, while differential evolution on the other hand is more efficient in handling real parameters. The obtained texture feature is binary in nature and the color feature is a real value, which suits very well the hybrid cluster center optimization problem in image segmentation. Thus in the proposed algorithm, the optimum texture feature centers are evolved using genetic algorithms, whereas the optimum color feature centers are evolved using differential evolution.
Publisher
Engineering, Technology & Applied Science Research
Reference26 articles.
1. T. Augustin, “The problem of meaningfulness: Weber’s law, Guilford’s power law, and the near-miss-to-Weber’s law”, Mathematical Social Sciences, Vol. 57, No. 1, pp. 117-130, 2009
2. A. K. Jain, Fundamentals of Digital Signal Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989
3. S. Bandyopadhyay, U. Maulik, “Nonparametric Genetic Clustering: Comparison of Validity Indices”, in IEEE Trans. Systems, Man, and Cybernetics – Part C: Application and Reviews, Vol. 31, pp. 120-125, 2001
4. S. Bandyopadhyay, U. Maulik, “Genetic Clustering for Automatic Evolution of Clusters and Application to Image Classification”, Pattern Recognition,Vol. 35, pp. 1197-1208, 2002
5. J. Chen, S. Shan, G. Zhao, X. Chen, W. Gao, M. Pietikäinen, “A robust descriptor based on Weber’s law”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2008,
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献