Author:
Jamei Mehrez,Mabrouk Abdelkader,Alassaf Yahya
Abstract
The design of cover landfill requires an optimum thickness of the compacted fine soil layer with small permeability. In general, the objective is to reduce the thickness of the landfill cover. However, for a thin layer, and under natural evaporation, denser crack network growths occur during the desiccation by drying. Cracks change the geometrical properties during the drying and wetting cycles and significantly compromise the role of the cover layer, by inducing an infiltration water flow and gas migration. An important differential flexure deformation occurs. The landfill cover, where stiffness and tensile and shear strengths were reduced is being progressively damaged. Thus, this paper aims 1) to quantify the flexural deformation and 2) to provide a methodology and a guideline for studying the integrity of a cover landfill. So, a mechanical model is proposed and implemented in Code Bright software. The methodology starts from the calibration and the validation of the mechanical model based on 1) four-point flexural beam tests and 2) on existing published results. A physical prototype was employed to demonstrate the flexure deformation, and the crack development. Moreover, short natural fibers were mixed and embedded in the soil to make the soil reinforcement and delay crack propagation. In addition to the experimental investigation, mathematical constitutive equations were proposed, in which the contribution of short fibers in terms of increase of tensile strength was introduced. Finally, a simple case study was considered to demonstrate the role of the fiber-soil composite on flexural deformation and tensile stress distribution across the cover layer. An analysis of the numerical results was conducted to support the use of short fibers as reinforcement, which is an environmentally friendly and sustainable solution.
Publisher
Engineering, Technology & Applied Science Research