Influence of Deflection Deformations on the Sustainability of the Landfill Cover: Analysis and Recommendations

Author:

Jamei Mehrez,Mabrouk Abdelkader,Alassaf Yahya

Abstract

The design of cover landfill requires an optimum thickness of the compacted fine soil layer with small permeability. In general, the objective is to reduce the thickness of the landfill cover. However, for a thin layer, and under natural evaporation, denser crack network growths occur during the desiccation by drying. Cracks change the geometrical properties during the drying and wetting cycles and significantly compromise the role of the cover layer, by inducing an infiltration water flow and gas migration. An important differential flexure deformation occurs. The landfill cover, where stiffness and tensile and shear strengths were reduced is being progressively damaged. Thus, this paper aims 1) to quantify the flexural deformation and 2) to provide a methodology and a guideline for studying the integrity of a cover landfill. So, a mechanical model is proposed and implemented in Code Bright software. The methodology starts from the calibration and the validation of the mechanical model based on 1) four-point flexural beam tests and 2) on existing published results. A physical prototype was employed to demonstrate the flexure deformation, and the crack development. Moreover, short natural fibers were mixed and embedded in the soil to make the soil reinforcement and delay crack propagation. In addition to the experimental investigation, mathematical constitutive equations were proposed, in which the contribution of short fibers in terms of increase of tensile strength was introduced. Finally, a simple case study was considered to demonstrate the role of the fiber-soil composite on flexural deformation and tensile stress distribution across the cover layer. An analysis of the numerical results was conducted to support the use of short fibers as reinforcement, which is an environmentally friendly and sustainable solution.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3