Tweet Prediction for Social Media using Machine Learning

Author:

Fattah Mohammed,Haq Mohd AnulORCID

Abstract

Tweet prediction plays a crucial role in sentiment analysis, trend forecasting, and user behavior analysis on social media platforms such as X (Twitter). This study delves into optimizing Machine Learning (ML) models for precise tweet prediction by capturing intricate dependencies and contextual nuances within tweets. Four prominent ML models, i.e. Logistic Regression (LR), XGBoost, Random Forest (RF), and Support Vector Machine (SVM) were utilized for disaster-related tweet prediction. Our models adeptly discern semantic meanings, sentiment, and pertinent context from tweets, ensuring robust predictive outcomes. The SVM model showed significantly higher performance with 82% accuracy and an F1 score of 81%, whereas LR, XGBoost, and RF achieved 79% accuracy with average F1-scores of 78%.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3