Optimizing Edge AI for Tomato Leaf Disease Identification

Author:

Gatla Anitha,Reddy S. R. V. Prasad,Mandru Deenababu,Thouti Swapna,Kavitha J.,Souissi Ahmed Saad Eddine,Veerendra A. S.,Srividya R.,Flah Aymen

Abstract

This study addresses the critical challenge of real-time identification of tomato leaf diseases using edge computing. Traditional plant disease detection methods rely on centralized cloud-based solutions that suffer from latency issues and require substantial bandwidth, making them less viable for real-time applications in remote or bandwidth-constrained environments. In response to these limitations, this study proposes an on-the-edge processing framework employing Convolutional Neural Networks (CNNs) to identify tomato diseases. This approach brings computation closer to the data source, reducing latency and conserving bandwidth. This study evaluates various pre-trained models, including MobileNetV2, InceptionV3, ResNet50, and VGG19 against a custom CNN, training and validating them on a comprehensive dataset of tomato leaf images. MobileNetV2 demonstrated exceptional performance, achieving an accuracy of 98.99%. The results highlight the potential of edge AI to revolutionize disease detection in agricultural settings, offering a scalable, efficient, and responsive solution that can be integrated into broader smart farming systems. This approach not only improves disease detection accuracy but can also provide actionable insights and timely alerts to farmers, ultimately contributing to increased crop yields and food security.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3