Prioritizing Road Maintenance: A Framework integrating Fuzzy Best-Worst Method and VIKOR for Multi-Criteria Decision Making

Author:

Hasan Ali Ezat,Jaber Firas K.

Abstract

A nation’s development depends on its transport networks, particularly the road network, which plays a crucial role in the country’s economic and social advancement and well-being. However, roads are subject to deterioration due to weather conditions, traffic loading, and construction quality. If they are not maintained properly, they will quickly worsen over time, resulting in reduced mobility and accessibility. To develop and maintain a good road network, careful planning is needed, which covers all aspects of road maintenance, funding, construction, quality, and other criteria. However, due to limited budgets, not all roads can be maintained and rehabilitated at the same time. Road maintenance priority and optimal use of insufficient funding are the most challenging problems the authorities face. The development of a systematic approach is essential to formulate appropriate maintenance policies. This is why the concept of road maintenance prioritization is essential. Additionally, industry experts have also identified a lack of a Multi-Criteria Decision Making (MCDM) technique that can incorporate the views of all Decision Makers (DMs) in the road maintenance prioritization process. This study aims to propose a framework for prioritizing road maintenance using MCDM techniques in a fuzzy environment. A case study that considers 20 criteria was conducted. The study integrated two MCDM techniques, namely the Fuzzy Best-Worst Method (BWM) and VIKOR, to help DMs evaluate and rank the alternatives, on the basis of the selected maintenance criteria. The aim of this framework is to enhance the decision-making process with impartiality and reliability and to assist in reaching an optimal decision. By comparing the Q values for each alternative, A5 was revealed to have higher priority over the other roads in terms of maintenance and rehabilitation activities.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3