Abstract
In the case that life distribution of new devices follows the normal distribution, the life distribution of the same brand used devices follows left-sided truncated normal distribution. In spite of many mathematical models being available to approximate the normal distribution density functions, there is a few work available on modeling/approximating the density functions of left-sided truncated normal distribution. This article introduces a high accuracy mathematical model to approximate the cumulative density function of left-sided truncated standard normal distribution defined on the range of [truncation point (ZL): ∞]. The introduced model is derived from the Cadwell approximation of the normal cumulative density. The accuracy level change with Z score is discussed in details. The maximum deviation of the model results, from the real results for the whole region of [-∞<Z<-2:∞], is 0.006877.
Publisher
Engineering, Technology & Applied Science Research
Reference14 articles.
1. M. M. Hamasha, “Practitioner advice: approximation of the cumulative density of left-sided truncated normal distribution using logistic function and its implementation in Microsoft Excel”, Qual. Eng., 2016
2. S. R. Bowling, M. T. Khasawneh, S. Kaewkuekool, B. R. Cho, “A logistic approximation to the cumulative normal distribution”, J. Ind. Eng. Manage., Vol. 2, No. 1, pp. 114-127, 2009
3. J. H. Cadwell, “The bivariate normal integral”, Biometrika, Vol. 38, pp. 475-479, 1951
4. H. Vazquez-Leal, R. Castaneda-Sheissa, U. Filobello-Nino, A. Sarmiento-Reyes, J. S. Orea, “High accurate simple approximation of normal distribution integral”, Math. Prob. Eng., Vol. 2012, Article ID 124029, pp. 1-22, 2016
5. A. Choudhury, “A simple approximation to the area under standard normal curve”, Math. Stat., Vol. 2, No. 3, pp. 147-149, 2014
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献