Numerical Analysis for the Oxidation of Phenol with TiO2 in Wastewater Photocatalytic Reactors

Author:

Maddah H. A.

Abstract

Phenolic compounds in wastewater (even at low levels) are found to be quite toxic to humans due to their carcinogenic effects. Photocatalysis has been widely studied for the removal of phenol from industrial wastewater. In this study, photocatalytic oxidation of phenol, under UV irradiation in the presence of TiO2, has been numerically investigated. Phenol mass balance and forward finite difference method (explicit) along with various assumed/calculated parameters, from previous works, were used to numerically plot phenol concertation profiles in water with different initial phenol concentrations. Phenol compounds were observed to be totally oxidized at the bottom of the reactor and the maximum conversion rates occur near the reactor walls. It was found that higher irradiation times increase phenol oxidation rates due to higher water hydrolysis. Oxidation rate of phenol (consumption) increases with the increase in initial phenol concentration.

Publisher

Engineering, Technology & Applied Science Research

Reference45 articles.

1. H. A. Maddah, “Optimal operating conditions in designing photocatalytic reactor for removal of phenol from wastewater,” ARPN J. Eng. Appl. Sci., vol. 11, no. 3, pp. 1799–1802, 2016.

2. J. Herrmann, “Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants,” Catal. Today, vol. 53, no. 1, pp. 115–129, 1999.

3. D. R. Fruge, G. D. Fong, and F. K. Fong, “Photosynthesis of Polyatomic Organic Molecules From Carbon Dioxide and Water by the Photocatalytic Action of Visible-Light-Illuminated Platinized Chlorophyll a Dihydrate Polycrystals,” Journal of the American Chemical Society, vol. 101, no. 13. pp. 3694–3697, 1979.

4. GENS, “What is Photocatalyst?,” Green Earth Nano Science Inc., Toronto, Canada, 2012.

5. H. Maddah and A. Chogle, “Biofouling in reverse osmosis: phenomena, monitoring, controlling and remediation,” Appl. Water Sci., vol. 7, no. 6, pp. 2637–2651, 2016.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3