Adaptive Fuzzy Type-2 Synergetic Control Based on Bat Optimization for Multi-Machine Power System Stabilizers

Author:

Nechadi E.

Abstract

A new, adaptive, fuzzy type-2 fast terminal, synergetic multi-machine power system stabilizer is proposed in this study, based on the Bat algorithm. The time spent to reach the equilibrium point, from any initial state, is guaranteed to be finite. The adaptive fuzzy type-2 design is applied to estimate the unknown functions of a multi-machine power system. The parameters of the fast terminal synergetic control are optimized, using bat metaheuristic method. In order to test the robustness of the proposed stabilizer, three load conditions, of the multi-machine power system are studied. A comparison of the proposed adaptive fuzzy type-2 synergetic power system stabilizer with bat conventional approach is presented, indicating improved performance. The control system stability is assessed by the second theorem of Lyapunov and is proven to be asymptotically stable.

Publisher

Engineering, Technology & Applied Science Research

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Variable Structure Fuzzy Power System Stabilizer in Multimachine System;International Journal of Electrical Engineering and Computer Science;2023-06-06

2. Electric Vehicle Lateral Stability Control Design Based on Brake-By-Wire System Using Fuzzy-SMC;2022 2nd International Seminar on Machine Learning, Optimization, and Data Science (ISMODE);2022-12-22

3. Air Conditioning System Simulation Automatic Optimization Platform Based on Fuzzy Control Algorithm;2022 International Conference on Artificial Intelligence of Things and Crowdsensing (AIoTCs);2022-10

4. Local Search-based Non-dominated Sorting Genetic Algorithm for Optimal Design of Multimachine Power System Stabilizers;Engineering, Technology & Applied Science Research;2021-06-09

5. Robust Wheel Slip for Vehicle Anti-lock Braking System with Fuzzy Sliding Mode Controller (FSMC);Engineering, Technology & Applied Science Research;2020-10-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3