Use of Rice Husk Ash as Cementitious Material in Concrete

Author:

Bheel N.,Abro A. W.,Shar I. A.,Dayo A .A.,Shaikh S.,Shaikh Z. H.

Abstract

In this research, rice husk ash (RHA) was used as a partial substitute for cement in concrete to reduce its cost, and alternative processing methods using agricultural/industrial waste were found. The main objective of this study was to determine the fresh (flowability) and hardened (splitting tensile strength and compressive strength) concrete properties using RHA at 0%, 5%, 10%, 15% and 20% by weight. A total of 90 concrete samples (45 cubes and 45 cylinders) were prepared and cured on 7, 14, and 28 days to the design of target strength 28N/mm2, and ultimately, these concrete specimens were tested on UTM. Three concrete specimens were cast for each proportion and ultimately the average of the three concrete samples was taken as the final result. The flowability of fresh concrete decreases with increasing content of RHA in concrete. The results showed that the compressive and tensile strength of the concrete specimens increased by 11.8% and 7.31%, respectively by using 10% RHA at 28 days curing.

Publisher

Engineering, Technology & Applied Science Research

Reference35 articles.

1. A. Manimaran, M. Somasundaram, P. T. Ravichandran, “Experimental study on partial replacement of coarse aggregate by bamboo and fine aggregate by quarry dust in concrete”, International Journal of Civil Engineering and Technology, Vol. 8, No. 8, pp. 1019-1027, 2017

2. M. K. Nemati, “Chapter 5: Aggregates for Concrete”, in: Concrete Technology-Fiber Reinforced Concrete Final Report, University of Washington, 2013

3. P. A. Shirule, A. Rahman, R. D. Gupta, “Partial Replacement of Cement With Marble Dust Powder”, International Journal of Advanced Engineering and Studies, Vol. 1, No. 3, pp. 175–177, 2012

4. J. Alex, J. Dhanalakshmi, B. Ambedkar, “Experimental investigation on rice husk ash as cement replacement on concrete production”, Construction and Build Materials, Vol. 127, pp. 353–362, 2016

5. E. Aprianti, P. Shafgh, S. Bahri, J. Nodeh, “Supplementary cementitious materials origin from agricultural wastes—a review”, Construction and Building Materials, Vol. 74, pp. 176–187, 2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3