Advantages of Giraph over Hadoop in Graph Processing

Author:

Vidal-Silva C. L.,Madariaga E.,Pham T.,Rubio J. M.,Urzua L. A.,Carter L.,Johnson F.

Abstract

This article presents a comparison of the computing performance of the MapReduce tool Hadoop and Giraph on large-scale graphs. The main ideas of MapReduce and bulk synchronous parallel (BSP) are reviewed as big data computing approaches to highlight their applicability in large-scale graph processing. This paper reviews the execution performance of Hadoop and Giraph on the PageRank algorithm to classify web pages according to their relevance, and on a few other algorithms to find the minimum spanning tree in a graph with the primary goal of finding the most efficient computing approach to work on large-scale graphs. Experimental results show that the use of Giraph for processing large-size graphs reduces the execution time by 25% in comparison with the results obtained using the Hadoop for the same experiments. Giraph represents the optimal option thanks to its in-memory computing approach that avoids secondary memory direct interaction.

Publisher

Engineering, Technology & Applied Science Research

Reference24 articles.

1. I. Yaqoob, I. A. T. Hashem, A. Gani, S. Mokhtar, E. Ahmed, N. B. Anuar, A. V. Vasilakos, “Big data”, International Journal of Information Management, Vol. 36, No. 6, pp. 1231–1247, 2016

2. A. K. Wahi, V. Ahuja, “The internet of things-new value streams for customers”, International Journal of Information Technology and Management, Vol. 16, No. 4, pp. 360–375, 2017

3. P. Zikopoulos, C. Eaton, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data, McGrawHill Osborne Media, 2011

4. T. White, Hadoop: The Definitive Guide, O’Reilly Media, Inc., 2015

5. J. Dean, S. Ghemawat, “Mapreduce: Simplified data processing on large clusters”, 6th Conference on Symposium on Operating Systems Design & Implementation, San Francisco, December 6-8, 2004

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composição de Relacionamentos entre Objetos na Abordagem VISO: Exploração de Algoritmos para Análise de Links;Anais do XVI Simpósio Brasileiro de Computação Ubíqua e Pervasiva (SBCUP 2024);2024-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3