Towards Achieving Machine Comprehension Using Deep Learning on Non-GPU Machines

Author:

Khan U.,Khan K.,Hassan F.,Siddiqui A.,Afaq M.

Abstract

Long efforts have been made to enable machines to understand human language. Nowadays such activities fall under the broad umbrella of machine comprehension. The results are optimistic due to the recent advancements in the field of machine learning. Deep learning promises to bring even better results but requires expensive and resource hungry hardware. In this paper, we demonstrate the use of deep learning in the context of machine comprehension by using non-GPU machines. Our results suggest that the good algorithm insight and detailed understanding of the dataset can help in getting meaningful results through deep learning even on non-GPU machines.

Publisher

Engineering, Technology & Applied Science Research

Reference20 articles.

1. D. Karunakaran, “Entity extraction using Deep Learning based on Guillaume Genthial work on NER”, available at: https://

2. medium.com/intro-to-artificial-intelligence/entity-extraction-using-deep-learning-8014acac6bb8, 2017

3. https://rajpurkar.github.io/SQuAD-explorer/

4. P. Rajpurkar, J. Zhang, K. Lopyrev, P. Liang, “SQuAD: 100,000+ Questions for Machine Comprehension of Text”, available at: https://arxiv.org/abs/1606.05250, 2016

5. D. Chen, A. Fisch, J. Weston, A. Bordes, “Reading Wikipedia to Answer Open-Domain Questions”, 55th Annual Meeting of the Association for Computational Linguistics, Vancouver, Canada, July 30-August 4, 2017

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3