Monitoring Leachate Migration in Compacted Soil Using Digital Image Technique

Author:

Yamusa Y. B.,Sa’ari R.,Ahmad K.,Alias N.,Mustaffar M.,Foong L. K.

Abstract

As leachate has been a source of groundwater contamination worldwide, this paper examines the phenomenon of leachate migration on different gradations of compacted laterite soil used as sanitary landfill liners. Three different soil gradations (30%, 40% and 50% with respect to fines content) used in this study were compacted in circular acrylic columns to provide a clear visualization of leachate migration into the soils. Digital image technique was used in capturing photos at successive time intervals to monitor the leachate migration. The captured digital images were fed into Matlab and converted into hue-saturation-intensity (HSI) format. Surfer software then read the HSI and generated 2D contour plots. The results of the experiments showed that the leachate moves downward faster in the soil gradation with the least fines content. Hydraulic conductivity values decrease with increase in time duration and equally with increase in fines content. The hydraulic conductivities of the leachate for 30%, 40% and 50% fines were 3.64×10-9m/s, 2.40×10-9m/s, and 1.24×10-9m/s respectively. This reveals that for tropical laterite soils, gradation containing 50% fines content provides better hydraulic conductivity. The use of noninvasive digital image technique can enable designers/engineers to monitor and visualize the leachate migration in compacted soils in waste containment application systems.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3