Automated Activity Recognition with Gait Positions Using Machine Learning Algorithms

Author:

Ng Y. L.,Jiang X.,Zhang Y.,Shin S. B.,Ning R.

Abstract

Exoskeletons are wearable devices for enhancing human physical performance and for studying actions and movements. They are worn on the body for additional power and load-carrying capacity. Exoskeletons can be controlled using signals from the muscles. In recent years, gait analysis has attracted increasing attention from fields such as animation, athletic performance analysis, and robotics. Gait patterns are unique, and each individual has his or her own distinct gait pattern characteristics. Gait analysis can monitor activity in sensitive areas. This paper uses various machine learning algorithms to predict the activity of subjects using exoskeletons. Here, localization data from the UIC machine learning repository are used to recognize activities with gait positions. The study also compares five machine learning methods and examines their efficiency and accuracy in activity prediction for three different subjects. The results for the various machine learning methods along with efficiency and accuracy results are discussed.

Publisher

Engineering, Technology & Applied Science Research

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leukemia Diagnosis using Machine Learning Classifiers based on MRMR Feature Selection;Engineering, Technology & Applied Science Research;2024-08-02

2. Smartphone IMU Sensors for Human Identification through Hip Joint Angle Analysis;Sensors;2024-07-23

3. Human Activity Recognition through Smartphone Inertial Sensors with ML Approach;Engineering, Technology & Applied Science Research;2024-02-08

4. Robust Human Movement Prediction by Completion-Generative Adversarial Networks with Huber Loss;2022 29th National and 7th International Iranian Conference on Biomedical Engineering (ICBME);2022-12-21

5. Wearable-Gait-Analysis-Based Activity Recognition: A Review;International Journal on Smart Sensing and Intelligent Systems;2022-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3