ECG Noise Reduction with the Use of the Ant Lion Optimizer Algorithm

Author:

Hii K. H.,Narayanamurthy V.,Samsuri F.

Abstract

The electrocardiogram (ECG) signal is susceptible to noise and artifacts and it is essential to remove that noise in order to support any decision making for automatic heart disorder diagnosis systems. In this paper, the use of Ant Lion Optimizer (ALO) for optimizing and identifying the cutoff frequency of the ECG signal for low-pass filtering is investigated. Generally, the spectrums of the ECG signal are extracted from two classes: arrhythmia and supraventricular. Baseline wander is removed by a moving median filter. A dataset of the extracted features of the ECG spectrums is used to train the ALO. The performance of the ALO is investigated. The ALO-identified cutoff frequency is applied to a Finite Impulse Response (FIR) filter and the resulting signal is evaluated against the original clean and conventional filtered ECG signals. The results show that the intelligent ALO-based system successfully denoised the ECG signals more effectively than the conventional method. The accuracy percentage increased by 2%.

Publisher

Engineering, Technology & Applied Science Research

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An error-bounded median filter for correcting ECG baseline wander;Health Information Science and Systems;2023-09-26

2. Damage Identification of Suspension Footbridge Structures using New Hunting-based Algorithms;Engineering, Technology & Applied Science Research;2023-08-09

3. A Systematic Review on Metaheuristic Optimization Techniques for Feature Selections in Disease Diagnosis: Open Issues and Challenges;Archives of Computational Methods in Engineering;2022-11-27

4. Design and Implementation of a Medical TeleMonitoring System based on IoT;Engineering, Technology & Applied Science Research;2022-08-01

5. An Improved Denoising Algorithm for Removing Noise in Color Images;Engineering, Technology & Applied Science Research;2022-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3