Reduced Feature Set for Emotion Based Spoken Utterances of Normal and Special Children Using Multivariate Analysis and Decision Trees

Author:

Siddiqui M. A.,Ali S. A.,Haider N. G.

Abstract

The current paper deals with the use of multivariate data analysis and decision tree methods in order to reduce the feature set for the normal and special children speech in four different emotions: anger, happiness, neutral and sadness. Ten features were extracted, by an algorithm implemented in a previous study to classify the speech emotions of normal and special children. In the current study, the best features are selected using multivariate analysis: principal component analysis (PCA), factor analysis and decision tree. Step by step PCA is applied to reduce the feature set according to the variables that are collinear. The obtained reduced feature sets are applicable to both normal and special children samples. Experimental results revealed that PCA yields the feature set comprising pitch, intensity, formant, LPCC and rate of acceleration. Factor analysis provides three feature sets out of which the feature set comprising of Rasta PLP, MFCC, ZCR, and intensity provides the best result. Decision tree yields a feature set comprising energy, pitch and LPCC.

Publisher

Engineering, Technology & Applied Science Research

Reference13 articles.

1. S. Ramakrishnan, “Recognition of Emotion from Speech: A Review”, in: Speech Enhancement, Modeling and Recognition- Algorithms and Applications, pp. 121-138, InTech, 2012

2. S. Pahune, N. Mishra, “Emotion Recognition through Combination of Speech and Image Processing: A Review”, International Journal on Recent and Innovation Trends in Computing and Communication, Vol. 3, No. 2, pp. 134-137, 2015

3. B. Schuller, A. Batliner, D. Seppi, S.Steidl, T. Vogt, J. Wagner, L. Devillers, L. Vidrascu, N. Amir, L. Kessous, V. Aharonson, “The relevance of feature type for the automatic classification of emotional user states: low level descriptors and functional”, in: INTERSPEECH 2007, Antwerp, Belgium, pp. 2253-2256, August 27-31, 2007

4. B. Schuller, G. Rigoll, “Recognizing interest in conversational speech–comparing bag of frames and supra-segmental features”, INTERSPEECH, Brighton, UK, pp. 1999-2002, September 6-10, 2009

5. Y. Zhou, Y. Sun, L. Yang, Y. Yan, “Applying articulatory features to speech emotion recognition”, IEEE 9th International Conference on Research Challenges in Computer Science, Shanghai, China, December 28-29, 2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3