Particle Crushing Effect on The Geotechnical Properties of Soil

Author:

Rind T. A.,Karira H.,Jhatial A. A.,Sohu S.,Sandhu A. R.

Abstract

Foundations are considered as the backbone of a structure. Most of the times, the foundation is laid on the soil. For the foundation design of any structure, we need to know beforehand the soil conditions such as shear strength and permeability. These parameters help us determine the bearing capacity of the soil. The soil conditions are determined by performing various laboratory tests such as shear box test or tri-axial shear test. However, we cannot design the foundation considering these data as the ground conditions will change once the loads are applied to the soil as there are some soil particles with angularity or sharp edges will break. Once they will break, soil conditions will not remain the same as they were before since the gradation will change. This work is carried out in order to know the impact soil breakage brings to the soil (granular soil). For this purpose, actual ground conditions were simulated in the laboratory by applying one-dimensional compression to soil particles for about 45 minutes in a Universal Testing Machine (UTM). Different crushing loads to soil particles were applied and the change in the soil behavior was monitored. It was found that due to particle breakage of soil, the engineering properties of sand altered. This research work aims to analyze the effect of particle breakage only in the case of sand.

Publisher

Engineering, Technology & Applied Science Research

Reference17 articles.

1. L. E. Vallejo, Z. Chik, “The evolution of crushing in granular materials and its effect on their mechanical Properties”, Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering, Millpress Science Publishers/IOS Press, 2006

2. M. L. Chen, G. W. Jian, B. Gan, W. H. Jiang, J. W. Zhou, “Physical and Compaction Properties of Granular Materials with Artificial Grading behind the Particle Size Distributions”, Advances in Materials Science and Engineering, Vol. 2018, pp. 1-20, 2018

3. O. H. Al Hattamleh, H. H. Al-Deeky, M. N. Akhtar, “The Consequence of Particle Crushing in Engineering Properties of Granular Materials”, International Journal of Geosciences, Vol. 4, No. 7, pp. 1055-1060, 2013

4. T. A. Rousan, O. Al Hattamleh, R. A. Dwairi, “Effect of Inherent Anisotropy on Shear Strength Following Crushing of Natural Aqaba Subgrade Sand”, Jordan Journal of Civil Engineering, Vol. 5, No. 3, pp. 431-445, 2011

5. J. P. Hyslip, L. E. Vallejo, “Fractal analysis of the roughness and size distribution of granular materials”, Engineering Geology, Vol. 48, No. 3-4, pp. 231-244, 1997

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3