FPGA Implementation of a Robust MPPT of a Photovoltaic System Using a Fuzzy Logic Controller Based on Incremental and Conductance Algorithm

Author:

Allani M. Y.,Mezghani D.,Tadeo F.,Mami A.

Abstract

Climate dependence requires robust control of the photovoltaic system. The current paper is divided in two main sections: the first part is dedicated to compare and evaluate the behaviors of three different maximum power point tracking (MPPT) techniques applied to photovoltaic energy systems, which are: incremental and conductance (IC), perturb and observe (P&O) and fuzzy logic controller (FLC) based on incremental and conductance. A model of a photovoltaic generator and DC/DC buck converter with different MPPT techniques is simulated and compared using Matlab/Simulink software. The comparison results show that the fuzzy controller is more effective in terms of response time, power loss and disturbances around the operating point. IC and P&O methods are effective but sensitive to high-frequency noise, less stable and present more oscillations around the PPM. In the second section, the FPGA platform is used to implement the proposed control. The FLC architecture is implemented on an FPGA Spartan 3E using the ISE Design Suite software. Simulation results showed the effectiveness of the proposed fuzzy logic controller.

Publisher

Engineering, Technology & Applied Science Research

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Single Stage Photovoltaic Solar Pumping System based on the Three Phase Multilevel Inverter;Engineering, Technology & Applied Science Research;2023-12-05

2. Developed and Intelligent Structure of a Control for PV Water Treatment System;Energies;2023-09-11

3. Comparative Study of ANN and Incremental Conductance MPPT for Solar Water Pump;2023 International Conference on Recent Advances in Electrical, Electronics & Digital Healthcare Technologies (REEDCON);2023-05-01

4. Decoupling Control Applied to the Smart Grid Power Dispatching Problem;Engineering, Technology & Applied Science Research;2022-08-07

5. Modeling and Simulation of a UV Water Treatment System Fed by a GPV Source Using the Bond Graph Approach;Engineering, Technology & Applied Science Research;2022-06-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3