Green Scenarios for Power Generation in Vietnam by 2030

Author:

Nguyen V. H. M.,Nguyen L. D. L.,Vo C. V.,Phan B. T. T.

Abstract

Energy for future sustainable economic development is considered one crucial issue in Vietnam. This article aims to investigate green scenarios for power generation in Vietnam by 2030. Four scenarios named as business as usual (BAU), low green (LG), high green (HG) and crisis have been proposed for power generation in Vietnam with projection to 2030. Three key factors have been selected for these scenarios, namely: (1) future fuel prices, (2) reduction of load demand caused by the penetration of LED technology and rooftop photovoltaic (PV) systems, and (3) the introduction of power generation from renewable sources. The least costly structure of power generation system has been found. CO2 emission reduction of HG in comparison to the BAU scenario and its effect on generation cost reduction are computed. Results show that BAU is the worst scenario in terms of CO2 emissions because of the higher proportion of power generation from coal and fossil fuels. LG and HG scenarios show their positive impacts both on CO2 emissions and cost reduction. HG is defined as the greenest scenario by its maximum potential on CO2 emission reduction (~146.92Mt CO2) in 2030. Additionally, selling mitigated CO2can make green scenarios more competitive to BAU and Crisis in terms of cost. Two ranges of generation cost (4.3-5.5 and 6.0-7.7US$cent/kWh) have been calculated and released in correspondence with low and high fuel price scenarios in the future. Using LED lamps and increasing the installed capacity of rooftop PVs may help reduce electric load demand. Along with the high contribution of renewable sources will make the HG scenario become more attractive both in environmental and economic aspects when the Crisis scenario comes. Generation costs of all scenarios shall become cheap enough for promoting economic development in Vietnam by 2030.

Publisher

Engineering, Technology & Applied Science Research

Reference24 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3