A Novel Two-Stage Selection of Feature Subsets in Machine Learning

Author:

Kamala R. F.,Thangaiah P. R. J.

Abstract

In feature subset selection the variable selection procedure selects a subset of the most relevant features. Filter and wrapper methods are categories of variable selection methods. Feature subsets are similar to data pre-processing and are applied to reduce feature dimensions in a very large dataset. In this paper, in order to deal with this kind of problems, the selection of feature subset methods depending on the fitness evaluation of the classifier is introduced to alleviate the classification task and to progress the classification performance. To curtail the dimensions of the feature space, a novel approach for selecting optimal features on two-stage selection of feature subsets (TSFS) method is done, both theoretically and experimentally. The results of this method include improvements in the performance measures like efficiency, accuracy, and scalability of machine learning algorithms. Comparison of the proposed method is made with known relevant methods using benchmark databases. The proposed method performs better than the earlier hybrid feature selection methodologies discussed in relevant works, regarding classifiers’ accuracy and error.

Publisher

Engineering, Technology & Applied Science Research

Reference34 articles.

1. M. Dash, H. Liu, “Feature selection for classification”, Intelligent Data Analysis, Vol. 1, No. 1-4, pp. 131–156, 1997

2. R. Kohavi, G. H. John, “Wrappers for feature subset selection”, Artificial Intelligence, Vol. 97, No. 1-2, pp. 273–324, 1997

3. F. R. Kamala, P. R. J. Thangaiah, “A proposed two phase hybrid feature selection method using backward Elimination and PSO”, International Journal of Applied Engineering Research, Vol. 11, No. 1, pp. 77–83, 2016

4. M. Dash, H. Liu. “Consistency-based search in feature selection”, Artificial Intelligence, Vol. 151, No. 1-2, pp. 155–176, 2003

5. J. Kennedy, R. C. Eberhart, “Particle swarm optimization”, IEEE International Conference on Neural Networks, Perth, Australia, November27-December 1, 1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3