MgO Effect on The Dielectric Properties of BaTiO3

Author:

Boumous S.,Belkhiat S.,Kharchouche F.

Abstract

The dielectric properties of barium titanate as functions of the MgO addition in various rates are investigated in this paper. The ceramics were prepared by conventional methods. X-ray diffraction, scanning electron microscopy and energy dispersive spectrometry, were applied to determine the structure and microstructure of the studied material. Phases MgO, TiO and TiO2, have been detected. Decrease of the grain size with increasing MgO content was observed. Measurements of εr, tgδ and resistance have been performed at temperatures ranging from 300C to 4000C. The electric permittivity (εr) showed a considerable decrease with increasing MgO concentration. Additionally, for low MgO concentration (10£mol.% MgO) a shift of the dielectric loss peak (tgδm) towards low temperatures was observed. When the MgO content was ≥15mol.% MgO the tgδm moved into higher temperatures. The obtained results indicate that the substitution of Mg2+ ions in B-site ions (Ti4+) had a significant influence on the values of εr, tgδ and the resistance increase of the ceramics.

Publisher

Engineering, Technology & Applied Science Research

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Produce solid oxide fuel cell anodes as (BaTiO3)100x(MgO)x for clean energy;Results in Engineering;2023-09

2. Statistical study of optimizing preparation new SOFC anode;2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2023-05-21

3. Optimization of a Perovskite-based Multilayer Microwave Absorber using an Equivalent Circuit Model;Engineering, Technology & Applied Science Research;2023-04-02

4. Influence of Sintering Additives on Modified (Ba,Sr)(Sn,Ti)O3 for Electrocaloric Application;Inorganics;2023-04-01

5. Development of a Graphical User Interface for Reflection Loss Calculation in Perovskite-RGO based Microwave Absorbing Composites;Engineering, Technology & Applied Science Research;2023-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3