Fostering Sustainability through the Integration of Renewable Energy in an Agricultural Hydroponic Greenhouse

Author:

Lachheb Aymen,Marouani Rym,Mahamat Chabakata,Skouri Safa,Bouadila Salwa

Abstract

This research explores the feasibility of integrating renewable energy sources, such as solar and wind, to power a hydroponic greenhouse. In this way, the latter’s energy autonomy is ensured. The study begins by evaluating the annual electricity consumption of the examined system. A renewable energy system capable of meeting its energy requirements throughout the year is also designed. The main objective is to assess the efficiency of two types of renewable energy sources, namely photovoltaic panels and wind turbines, and to improve their integration within the agricultural chamber by implementing a model simulation. Two scenarios were examined: the first one represents a photovoltaic power plant with storage, connected to the grid, while the second scenario presents a wind power plant connected to the grid. This numerical analysis is supplemented by a one-year experimental study of a photovoltaic installation connected to the network with storage, which in turn is connected to the experimental device. To handle energy within the renewable energy greenhouse, an energy management system was developed based on a fuzzy logic controller. This system aims to maintain energy balance and ensure continuous power supply. The energy management system optimizes energy flow to minimize consumption, reduce grid dependence, and improve overall system efficiency, resulting in cost savings and certain environmental benefits.

Publisher

Engineering, Technology & Applied Science Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emulation Structures and Control of Wind-Tidal Turbine Hybrid Systems for Saudi Arabia Off-shore Development;Engineering, Technology & Applied Science Research;2024-08-02

2. Smart PV Hydroponic Greenhouse for Sustainable Agriculture in Tunisia;Engineering, Technology & Applied Science Research;2024-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3