Effect of Ground Granulated Blast Slag and Temperature Curing on the Strength of Fly Ash-based Geopolymer Concrete

Author:

Kumar Anil,Rajkishor .,Kumar Niraj,Chhotu Anil Kumar,Kumar Bhushan

Abstract

Concrete is used most extensively after water to meet construction requirements. Since the population is increasing day by day, the demand for concrete will always increase, hence, the demand for cement will also increase. The production of cement requires a lot of energy and emits greenhouse gases into the environment. Therefore, an alternative material for cement concrete is required. Geopolymer concrete (GPC) is an alternative to cement made of aluminosilicate materials such as fly ash, Ground Granulated Blast Slag (GGBS), silica fume, metakaolin, etc. If these materials are activated with an alkaline activator, then a bond that is responsible for the strength develops. GPC made with fly ash needs temperature curing to develop its strength, which limits its use on a large scale. In this study, a mix ratio of GPC equivalent to conventional M20 concrete was obtained at ambient curing conditions. The effect of temperature curing was also studied. GPC was prepared in three different mixes. In each mix, the binder content was changed by varying the fly ash and GGBS content. Two sets of cube, beam, and cylindrical samples were prepared from each mixture. One set was cured at ambient temperatures and the other at increased temperatures. The temperature-cured specimens provided higher strength than the ambient-cured. If a strength equivalent to conventional M20 concrete is required for ambient curing, then the mix should be 70% fly ash and 30% GGBS, and the ratio of binder, fine aggregate, and coarse aggregate should be 1:1.5:3.

Publisher

Engineering, Technology & Applied Science Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nano-silica and Ground Granulated Blast Furnace Slag Blended Concrete: Impact of Temperature on Stress–Strain Constitutive Model;Iranian Journal of Science and Technology, Transactions of Civil Engineering;2024-08-29

2. Incorporation of High Volume Ground Granulated Slag From Blast Furnaces in Pavement Quality Concrete;Engineering, Technology & Applied Science Research;2024-08-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3