Author:
Zahid Manar,Al-Zaidee Salah
Abstract
The main challenge in designing Light-Weight Concrete (LWC) is to adapt most of the design, production, and execution rules from normal-weight concrete. Carbon Fiber-Reinforced Polymer (CFRP) composites provide strength and stiffness to the composite system. This study investigated the stiffness of an LWC flat slab with CFRP when subjected to human-induced vibration. This was determined by finding the natural frequency of the slab and comparing it with the acceleration limit ratio (human perception of vibration) of 0.5% g. In most cases, vibration characteristics are examined using commercial software based on Finite Element Analysis (FEA) methods that are powerful tools, but the user needs to understand the underlying assumptions and methods implemented, especially for reinforced concrete floor systems where inherent attributes, such as cracking, play an important role in the determination of vibration characteristics. This study used Abaqus CAE. The main idea of this study was that such software cannot detect the behavior of cracks in structures over the years and the effect on frequencies, as stiffness depends on the modulus of elasticity and not on the moment of inertia. Therefore, the natural frequency equation has a component that constantly accounts for the level of cracking on concrete slabs. This component was theoretically determined with detailed calculations that are not provided in the Design Guide for Vibrations of Reinforced Concrete Floor Systems. Then, the constant that accounts for the level of cracking k1 was multiplied by the modulus of elasticity E and substituted in the latter's place in Abaqus to ensure the right behavior of the slab with and without CFRP. This study also investigated the properties of CFRP and how to represent it in the Abaqus. The numerical results showed good agreement with FEA and the acceptance criteria for walking excitations increased when using CFRP on a floor system.
Publisher
Engineering, Technology & Applied Science Research
Reference20 articles.
1. P. Junges, H. L. L. Rovere, and R. C. de A. Pinto, "Vibration Analysis of a Composite Concrete/GFRP Slab Induced by Human Activities," Journal of Composites Science, vol. 1, no. 2, Dec. 2017, Art. no. 11.
2. Design Guide for Vibrations of Reinforced Concrete Floor Systems. Schaumburg, IL, USA: CRSI, 2014.
3. A. W. Ali and N. M. Fawzi, "Production of Light Weight Foam Concrete with Sustainable Materials," Engineering, Technology & Applied Science Research, vol. 11, no. 5, pp. 7647–7652, Oct. 2021.
4. A. S. Salahaldeen and A. I. Al-Hadithi, "The Effect of Adding Expanded Polystyrene Beads (EPS) on the Hardened Properties of Concrete," Engineering, Technology & Applied Science Research, vol. 12, no. 6, pp. 9692–9696, Dec. 2022.
5. K. Farah and Y. Sato, "Numerical investigation of tension behavior of reinforced concrete members strengthened with FRP sheets," Journal of Structural Engineering, A, vol. 55A, pp. 1085–1093, 2009.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献