Prediction of Vehicle-induced Air Pollution based on Advanced Machine Learning Models

Author:

Matara Caroline,Osano Simpson,Yusuf Amir Okeyo,Aketch Elisha Ochungo

Abstract

Vehicle-induced air pollution is an important issue in the 21st century, posing detrimental effects on human health. Prediction of vehicle-emitted air pollutants and evaluation of the diverse factors that contribute to them are of the utmost importance. This study employed advanced tree-based machine learning models to predict vehicle-induced air pollutant levels, with a particular focus on fine particulate matter (PM2.5). In addition to a benchmark statistical model, the models employed were Gradient Boosting (GB), Light Gradient Boosting Machine (LGBM), Extreme Gradient Boosting (XGBoost), Extra Tree (ET), and Random Forest (RF). Regarding the evaluation of PM2.5 predictions, the ET model outperformed the others, as shown by MAE of 1.69, MSE of 5.91, RMSE of 2.43, and R2 of 0.71. Afterward, the optimal ET models were interpreted using SHAP analysis to overcome the ET model's lack of explainability. Based on the SHAP analysis, it was determined that temperature, humidity, and wind speed emerged as the primary determinants in forecasting PM2.5 levels.

Publisher

Engineering, Technology & Applied Science Research

Reference45 articles.

1. P. H. Avogbe et al., "Hematological changes among Beninese motor-bike taxi drivers exposed to benzene by urban air pollution," African Journal of Environmental Science and Technology, vol. 5, no. 7, pp. 464–472, 2011.

2. Y. Zhu, W. C. Hinds, S. Kim, and C. Sioutas, "Concentration and size distribution of ultrafine particles near a major highway," Journal of the Air & Waste Management Association (1995), vol. 52, no. 9, pp. 1032–1042, Sep. 2002.

3. S. Bhandarkar, "Vehicular Pollution, Their Effect on Human Heatlh and Mitigation Measures," Vehicle Engineering, vol. 1, no. 2, pp. 33–40, 2013.

4. M. M. Jackson, "Roadside Concentration of Gaseous and Particulate Matter Pollutants and Risk Assessment in Dar-Es-Salaam, Tanzania," Environmental Monitoring and Assessment, vol. 104, no. 1, pp. 385–407, May 2005.

5. M. Krzyżanowski, B. Kuna-Dibbert, and J. Schneider, Eds., Health effects of transport-related air pollution. Copenhagen, Denmark: World Health Organization Europe, 2005.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3