Dimensional Accuracy of 3D Printed Dog-bone Tensile Samples: A Case Study

Author:

Zisopol Dragos Gabriel,Portoaca Alexandra Ileana,Tanase Maria

Abstract

Three-dimensional (3D) printing technology has revolutionized manufacturing by enabling the rapid production of complex objects. However, ensuring dimensional accuracy in 3D printed parts remains a significant challenge due to various factors, including the selection of appropriate parameters during the Fused Deposition Modeling (FDM) process. Achieving dimensional accuracy is crucial in determining the reliability of a printing machine to produce objects that meet the expected results. This study aims to investigate the influence of FDM parameters (filling percentage and layer thickness) on the final dimensions of 3D printed parts made from polylactic acid (PLA) through a systematic experimental and statistical approach. The goal is to identify the optimal process parameter settings that minimize the error percentage in the dimensions of the printed parts using the Taguchi method. Overall higher dimensional accuracy was obtained, influenced mainly by the layer thickness parameter (in the case of Y direction dimensions) and by the filling percentage (in the case of Z direction dimensions – corresponding to sample thickness). The findings of this study provide valuable insight into identifying the optimal configuration for producing PLA 3D-printed components.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of printing time reduction on dimensional accuracy of final build FDM parts by modifying the G-code program;International Journal on Interactive Design and Manufacturing (IJIDeM);2024-07-02

2. Exploring Shore D Hardness Variations Under Different Printing Conditions and Post-processing Treatments;Jordan Journal of Mechanical and Industrial Engineering;2024-05-28

3. Study of the Injection of Secondary Air into the Intake Manifold of the Gas Turbine to Avoid the Compressor Surging Phenomenon;Engineering, Technology & Applied Science Research;2024-04-02

4. A Study on the Influence of FDM Parameters on the Compressive Behavior of PET-G Parts;Engineering, Technology & Applied Science Research;2024-04-02

5. A Study on the Influence of FDM Parameters on the Tensile Behavior of Samples made of PET-G;Engineering, Technology & Applied Science Research;2024-04-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3