DFPC: Dynamic Fuzzy-based Primary User Aware clustering for Cognitive Radio Wireless Sensor Networks

Author:

Panbude Shraddha,Iyer Brijesh,Nandgaonkar Anil B.,Deshpande Prachi S.

Abstract

Clustering-based routing solutions have proven to be efficient for wireless networks such as Wireless Sensor Networks (WSNs), Vehicular Ad Hoc Networks (VANETs), etc. Cognitive Radio WSN (CR-WSN) is a class of WSNs that consists of several resource-constrained Secondary Users (SUs), sink, and Primary Users (PUs). Compared to WSNs, there are several challenges in designing the clustering technique for CR-WSNs. As a result, one cannot directly apply the WSN clustering protocols to CR-WSNs. Developing a clustering protocol for CR-WSNs must address challenges such as ensuring PU protection, and SU connectivity, selecting the optimal Cluster Head (CH), and discovering the optimal cluster size. Present CR-WSN clustering solutions failed to resolve the trade-off among all essential clustering objectives. To address these challenges, this study presents a novel approach called Dynamic Fuzzy-based PU aware Clustering (DFPC) for CR-WSNs. DFPC uses a dynamic approach to discover the number of clusters, a fuzzy-based algorithm for optimal CH selection, and reliable multi-hop data transmission to ensure PU protection. To enhance the performance of CR-WSNs, an effective strategy was designed to define the optimal number of clusters using the network radius and live node. Fuzzy logic rules were formulated to assess the four CR-specific parameters for optimal CH selection. Finally, reliable intra- and intercluster data transmission routes are discovered to protect the PUs from malicious activities. The simulation results showed that the DFPC protocol achieved an improved average throughput of 48.04 and 46.49, a PDR of 93.36 and 84.37, and a reduced delay of 0.0271 and 0.0276 in static and dynamic topologies, respectively, which were better than those of ABCC, ATEEN, and LEACH protocols.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Dark Web;SSRN Electronic Journal;2024

2. Cyber Security Threats to Watch Out;SSRN Electronic Journal;2024

3. Cyber Security & Artificial Intelligence;SSRN Electronic Journal;2024

4. Online Voting System with Face Recognition and One Time Password;SSRN Electronic Journal;2023

5. Attendance Monitoring System using Face Recognition;SSRN Electronic Journal;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3