Author:
Marrouchi Sahbi,Ben Hessine Moez,Chebbi Souad
Abstract
This study delves into addressing the challenge of resolving the Unit Commitment (UC) problem, which focuses on enhancing the efficiency of production units and devising their operational schedules to accommodate fluctuations in consumption spanning from a day to a month. Given the intricate, combinatorial, and nonlinear constraints associated with each production unit, this study advocates an optimization approach rooted in fuzzy logic. A Langrangian function was established to simplify the UCP and to transform the different inequality into a linear unconstrained problem. The choice of fuzzy inputs was established using the partial derivatives of a Lagrangian function as a function of the powers injected into each node of the electrical network. This combination of the Lagrangian function and the input of the fuzzy regulator made it possible to control the different constraints in the total production cost function and to improve the operating efficiency of the different production units. This method was effectively applied to a 14-bus IEEE power network encompassing 5 generating units, to address the UC problem by optimizing generator load capacity (LCG) and minimizing Incremental Losses (IL). The numerical processing of the fuzzy linguistic variables was implemented using Mamdani-type fuzzy rules. This strategy stands out for its robust exploratory capability, facilitating the identification of optimal solutions to reduce production costs while ensuring optimal planning of production units.
Publisher
Engineering, Technology & Applied Science Research
Reference46 articles.
1. D. N. Simopoulos, S. D. Kavatza, and C. D. Vournas, "Unit commitment by an enhanced simulated annealing algorithm," IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 68–76, Jan. 2006.
2. M. Premkumar et al., "An efficient and reliable scheduling algorithm for unit commitment scheme in microgrid systems using enhanced mixed integer particle swarm optimizer considering uncertainties," Energy Reports, vol. 9, pp. 1029–1053, Dec. 2023.
3. A. Abu-Jasser and M. M. Hijjo, "Fuzzy-Logic-Based Approach to Solve the Unit-Commitment Problem," International Journal of Engineering Research and Development, vol. 2, no. 1, pp. 22–29, Jul. 2012.
4. T. A. A. Victoire and A. E. Jeyakumar, "Unit commitment by a tabu-search-based hybrid-optimisation technique," IEE Proceedings - Generation, Transmission and Distribution, vol. 152, no. 4, pp. 563–574, Jul. 2005.
5. C. C. A. Rajan and M. R. Mohan, "An evolutionary programming-based tabu search method for solving the unit commitment problem," IEEE Transactions on Power Systems, vol. 19, no. 1, pp. 577–585, Feb. 2004.