A Comparative Study of the Seismic Response of Different Concrete Slab Systems for a Multistory Building in Madinah

Author:

Laissy Mohamed,Al-Turkmani Zuhair,Atarji Omar,Saud Abdaulaziz

Abstract

Seismic analysis is considered as an important aspect of the design of high-rise buildings, particularly in earthquake prone areas. The structural system choice can have a considerable impact on the building seismic response. The goal of this study is to compare the seismic behavior of multiple slab systems used in a multi-story building in Saudi Arabia's Madinah region. This study's goal is to determine the most effective and efficient slab system performance in a seismic zone. The ETABS V20.3 program was used in this work to model and assess the seismic response of three different types of slab systems: flat, solid, and hollow blocks slab types. Many earthquake aspects, including story displacement, base shear, story drifts, column forces, and bending moments, are estimated for each system. The study examines and assesses each system's seismic response, and the conclusions are given and discussed. According to the findings, the choice of slab system has a considerable impact on the seismic reaction of the building. The hollow block system has the least base shear value and bending moments, while the flat slab system has the greatest. The values in the solid slab system are in the middle. In terms of story displacement and column forces, the study additionally indicates that the hollow block type system performs effectively in terms of story drifts, however, the solid slab system outperforms the others. The study's findings can assist designers and engineers to determine the best slab system for multistory buildings in seismic-prone areas by providing important insight and suggestions.

Publisher

Engineering, Technology & Applied Science Research

Subject

General Medicine

Reference26 articles.

1. . D. Imran, P. Scholar, and M. M. Ahmed, "Dynamic Analysis of G+20 Residential Building in Zone-2 and Zone-5 by Using Etabs," International Research Journal in Advanced Engineering and Technology, vol. 4, no. 1, pp. 2680–2684, Jan. 2018.

2. H. S. Mohana and M. R. Kavan, "Comparative Study of Flat Slab and Conventional Slab Structure Using ETABS for Different Earthquake Zones of India," International Research Journal of Engineering and Technology, vol. 2, no. 3, pp. 1931–1936, Jun. 2015.

3. R. Azad and S. Setia, "Response of Different RC Slab Systems in Buildings to Seismic Excitations," in Sustainable Development in Civil and Electrical Engineering, 2022.

4. I. Sococol, P. Mihai, T.-C. Petrescu, F. Nedeff, V. Nedeff, and M. Agop, "Analytical Study Regarding the Seismic Response of a Moment-Resisting (MR) Reinforced Concrete (RC) Frame System with Reduced Cross Sections of the RC Beams," Buildings, vol. 12, no. 7, Jul. 2022, Art. no. 983

5. M. Betti, L. Galano, and A. Vignoli, "Comparative analysis on the seismic behaviour of unreinforced masonry buildings with flexible diaphragms," Engineering Structures, vol. 61, pp. 195–208, Mar. 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3