Performance Analysis of a New Vertical Axis Turbine Design for Household Usage

Author:

Stratila Sergiu,Glasberg Dan,Mălăel Ion

Abstract

The popularity of small wind turbines intended for domestic use has significantly increased during the recent years, and it is reasonable to assume that this trend will continue given the present political and economic environment. There is a greater need for clean, pollution-free energy due to worries about climate change. In this study, a 1.5 KW vertical-axis Darrieus helix wind turbine for residential use was designed and its performance was mathematically evaluated under typical wind speed circumstances of 12 m/s. The study is split into two sections: In the first, we examined a standard wind turbine design with three identical blades, whereas in the second, the blades were different, each with a unique airfoil with a varying chord, even though they shared the same rotor diameter. For each case, 5 CFD simulations were performed in order to determine the power characteristics of the wind turbines. To correctly set up the computational domain, the number of elements and the minimum element size were taken into account whereas mesh dependency analysis was performed. In order to compare the results, the vorticity magnitude was measured at 4 different blade locations in each boundary condition. The results showed that when the power coefficient of the turbines is considered, such geometry adjustments are possible. Furthermore, the evolution of the torque coefficient over a full 360-degree rotation was studied. A summary of the improvements in performance resulting from the geometry adjustment is provided.

Publisher

Engineering, Technology & Applied Science Research

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer Architectures Empowered by Sierpinski Interconnection Networks utilizing an Optimization Assistant;Engineering, Technology & Applied Science Research;2024-08-02

2. Failures and Repairs: An Examination of Software System Failure;Bulletin of Business and Economics (BBE);2024-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3