Structural Behavior of Concrete One-Way Slab with Mixed Reinforcement of Steel and Glass Fiber Polymer Bars under Fire Exposure

Author:

Rasheed Mohammed R.,Mohammed Shatha D.

Abstract

Steel Reinforced Concrete (RC) frequently faces durability problems. In certain areas, Glass Fiber-Reinforced Polymer (GFRP) rebars are considered a non-corrodible substitute for steel reinforcement. Elevated temperatures have a significant impact on the mechanical characteristics and the adhesiveness of GFRP rebars to concrete, particularly when the polymeric matrix's glass transition temperature is approached or surpassed. Three simply supported reinforced concrete slabs were considered in the experimental program. Each specimen had identical dimensions of 1500×540×120 mm. For the fire resistance requirements, a 45 mm clear concrete cover and an exception of a 200 mm unexposed (cool) anchor zone at the ends were considered. The GFRP replacement ratio was 0, 20, and 40%. The burning procedure involved fire exposure for an hour with a steady-state temperature of 500 °C in accordance with ASTM E-119 regarding the temperature time elevation and a sudden cooling condition. The optimal concrete cover was detected by testing a fire-exposed small model reinforced by GFRP bars of varying concrete cover. The specimen was tested under static intense loads. The reference slab and the slab with a replacement percentage of 20% failed due to flexural failure, whereas the slab with a replacement percentage of 40% failed due to shear failure. The influence of the GFRP replacement ratio was extended to include toughness and ultimate load. A replacement percent of 20% increased them by 18.30, and 2.62%, respectively, while a replacement percent of 40% decreased them by 28.16, and 3.13%, accordingly. It was also shown that the location of replacing the GFRP and 200 mm of unexposed (cold) installation area at the ends with a 45 mm concrete cover has a significant impact. The more the GFRP is located in the middle, away from the ends, the better the fire resistance is.

Publisher

Engineering, Technology & Applied Science Research

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3