Sensitivity Analysis of Workspace Conflicts According to Changing Geometric Conditions

Author:

Rohani M.,Shafabakhsh G.,Haddad A.,Asnaashari E.

Abstract

Workspace conflicts and building components can happen in different forms and both permanently and temporarily. These spatial clashes affect the work process and deplete the project process. Geometric clash detection system of 4D simulation tools can identify the number of clashes for construction resources in the worksite to improve workflow planning. In the present research, building components and their corresponding workspaces were simulated, based on the schedule and activities, using a visual simulation tool. First, the total daily volumes of workspace were calculated according to the activities' schedule and compared by the available space in order to determine the critical days for the project. Then, the number of time-based conflicts were examined and analyzed for building components and resources among activities and by different tolerance distances. The main objective of this study was to evaluate the sensitivity analysis of clash numbers based on the geometrical conditions in different statuses (Inflexible, Semi-flexible and flexible) to assist the planner for detecting real conflicts. The results show that the tolerance distance of 0.2 to 1 meter for the clashes of workspace and the building components and 0.2 to 2 meters for the clashes of workspaces with each other to provide realistic results of actual construction operation conflicts. By the help of this methodology, the project planners are able to identify and prioritize the effective conflicts on the work process in comparison to the clashes resulted from iteration or minor design inaccuracy.

Publisher

Engineering, Technology & Applied Science Research

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-Dependent Reliability Assessment of a Continuous I-shaped Steel Beam Considering Corrosion Effects;Engineering, Technology & Applied Science Research;2022-12-01

2. An Innovative Multicriteria Decision-Making Tool for Building Performance Optimization;Engineering, Technology & Applied Science Research;2021-02-06

3. Global Sensitivity Analysis Of In-Plane Elastic Buckling Of Steel Arches;Engineering, Technology & Applied Science Research;2020-12-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3