Author:
Opanuga A. A.,Okagbue H. I.,Bishop S. A.,Agboola O. O.
Abstract
In this work, an analytical study of the effects of Hall current and Joule heating on the entropy generation rate of couple stress fluid is performed. It is assumed that the applied pressure gradient induces fluid motion. At constant velocity, hot fluid is injected at the lower wall and sucked off at the upper wall. The obtained equations governing the flow are transformed to dimensionless form and the resulting nonlinear coupled boundary value problems for velocity and temperature profiles are solved by Adomian decomposition method. Analytical expressions for fluid velocity and temperature are used to obtain the entropy generation and the irreversibility ratio. The effects of Hall current, Joule heating, suction/injection and magnetic field parameters are presented and discussed through graphs. It is found that Hall current enhances both primary and secondary velocities and entropy generation. It is also interesting that Joule heating raises fluid temperature and encourages entropy production. On the other hand Hartman number inhibited fluid motion while increase in suction/injection parameter resulted into a shift in flow symmetry.
Publisher
Engineering, Technology & Applied Science Research
Reference45 articles.
1. G. K. Batchelor, “On the spontaneous magnetic field in a conducting liquid in turbulent motion”, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 21, No. 1066, pp. 406-416, 1950
2. J. C. R. Hunt, J. A. Shercliff, “Magnetohydrodynamics at high Hartmann number”, Annual Review of Fluid Mechanics, Vol. 3, pp. 37-62, 1971
3. S. Gupta, “Magnetohydrodynamic Ekmann layer”, Acta Mechanica, Vol. 13, pp. 155-160, 1972
4. D. R. V. Prasada Rao, D. V. Krishna, L. Debnath, “Combined effect of free and forced convection on MHD flow in a rotating porous channel”, International Journal of Mathematics and Mathematical Sciences, Vol. 5, No. 1, pp. 165-182, 1982
5. J. A. Gbadeyan, A. S. Idowu, “Radiation effect of magnetohydrodynamic flow of gas between concentric spheres”, Journal of the Nigerian Association of Mathematical Physics, Vol. 10, pp. 305-314, 2006
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献