Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP) Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

Author:

Askarizadeh N.,Mohammadizadeh M. R.

Abstract

Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, passage of time, damaging environmental factors, patch of rebar in plastic hinges and in some cases failures and weaknesses caused by previous earthquakes or explosion loads. Recently, Fiber Reinforced Polymer (FRP) components have been extensively and successfully used in seismic improvement. This study reinforces FRP reinforced concrete shear walls and steel strips. CFRP and steel strips are evaluated by different yield and ultimate strength. Numerical and experimental studies are done on walls with scale 1/2. These walls are exposed to cyclic loading. Hysteresis curves of force, drift and strain of FRP strips are reviewed in order to compare results of numerical work and laboratory results. Both numerical and laboratory results show that CFRP and steel strips increase resistance, capacity and ductility of the structure.

Publisher

Engineering, Technology & Applied Science Research

Reference13 articles.

1. A. Kheroddin, H. Naderpour, “Nonlinear Finite Element Analysis of R/C Shear Walls Retrofitted Using Externally Bonded Steel Plate and FRP Sheets”, 1st International Structural Specialty Conference, pp. 23-26, 2006

2. S. Soroshnia, H. Najafi, M. Mamaghani, M. Mehrvand, The Most Complete Practical Reference of ABAQUS, 2nd ed., Negarandeh Danesh, 2014

3. Dassault Systemes, Abaqus Analysis User’s Manual, Version 6-10, Dassault Systemes Simulia Corp., 2011

4. I. M. M. Ahmed, Linear and Nonlinear Flexural Stiffness Models for Concrete Walls in High-Rise Buildings, PhD Thesis, University of British Columbia, 2000

5. D. Mostofinejad, Reinforced concrete structures, 12th ed, Arkaneh Danesh, 2010

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3