Abstract
Given the importance of structure strengthening, this research introduces a particular type of steel structure in which the reduced beam section and post-tensioned cables were used for creating centralized property and preventing the formation of plastic hinges in the beam and columns. After introducing the system, ABAQUS modeling results are compared with a reliable laboratory sample to check its accuracy. Good convergence was seen which shows the modeling accuracy. The results of the model’s nonlinear static analysis revealed that the above steel structure has higher ductility when compared to conventional steel structures. Also, the results showed that with the rising of height, span length and early post-tensioned power of the cables we can increase the ductility of the structure.
Publisher
Engineering, Technology & Applied Science Research
Reference9 articles.
1. S. J. Chen, C. H. Yeh, J. M. Chu, “Ductile steel beam-to-column connections for seismic resistance”, Journal of Structural Engineering, Vol. 122, No. 11, pp. 1292-1299, 1996
2. N. F. Youssef, D. Bonowitz, J. L. Gross, A survey of steel moment-resisting frame buildings affected by the 1994 Northridge earthquake, US National Institute of Standards and Technology, 1995
3. M. D. Engelhardt, T. Winneberger, A. J. Zekany, T. J. Potyraj, “The dogbone connection: Part II”, Modern Steel Construction, Vol. 36, No. 8, pp. 46-55, 1996
4. C. W. Roeder, SAC program to assure ductile connection performance, Mazzolani and Tremblay, 2000
5. J. M. Ricles, R. Sause, M. M. Garlock, C. Zhao, “Posttensioned seismic-resistant connections for steel frames”, Journal of Structural Engineering, Vol. 127, No. 2, pp. 113-121, 2001
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Performance of Hybrid Castellated Beams;Engineering, Technology & Applied Science Research;2022-04-09