Author:
Phanendra Babu N. V.,Suresh Babu P.,Siva Sarma D. V. S. S.
Abstract
An important feature of a Wide-Area Measurement System (WAMS) is the ability to recover data during a communication failure. This paper presents a novel scheme of partitioning a PMU installed power network into a number of WAMS regions in order to make the power system restoration process simpler. This algorithm also proposes the optimal placement of Phasor Data Concentrators (PDCs) in each region to record the data from PMUs. This paper considers the restoration constraints like transformer equivalent bus, generation-load balance and the observability of region for the partitioning of power system. The proposed scheme is demonstrated with an IEEE-30 bus system. It is then applied on IEEE-39, IEEE-118 bus systems and on a Northern Regional Grid of the Indian Power Grid.
Publisher
Engineering, Technology & Applied Science Research
Reference18 articles.
1. S. Tamronglak, S. E Horowitz, A. G. Phadke, J. S. Thorp, “Anatomy of power system blackouts: preventive relaying strategies”, IEEE Transactions on Power Delivery, Vol. 11, No. 2, pp. 708–715, 1996
2. M. Adibi, L. H. Fink, “Power system restoration planning”, IEEE Trans. Power Syst., Vol. 9, No. 1, pp. 22–28, 1994
3. F. Wu, A. Monticelli, “Analytical tools for power system restoration—Conceptual design”, IEEE Trans. Power Syst., Vol. 3, No. 1, pp. 10–16, 1988
4. R. J. Kafka, D. R. Penders, S. H. Bouchey, M. M. Adibi, “System restoration plan development for a metropolitan electric system”, IEEE Trans. Power App. Syst., Vol. PAS-100, pp. 3703–3713, 1981
5. J. A. Huang, F. D. Galiana, G. T.Vuong, “Power system restoration incorporating interactive graphics and optimization”, Proc. 14th Int. Conf. Power Ind. Appl., Baltimore, MD, 1991
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献